Quality control material for the detection of somatic mutations in fixed clinical specimens by next-generation sequencing
نویسندگان
چکیده
BACKGROUND Targeted next generation sequencing (NGS) technology to assess the mutational status of multiple genes on formalin-fixed, paraffin embedded (FFPE) tumors is rapidly being adopted in clinical settings, where quality control (QC) practices are required. Establishing reliable FFPE QC materials for NGS can be challenging and/or expensive. Here, we established a reliable and cost-effective FFPE QC material for routine utilization in the Ion AmpliSeq™ Cancer Hotspot Panel v2 (CHP2) assay. METHODS The performance characteristics of the CHP2 assay were determined by sequencing various cell line mixtures and 55 different FFPE tumors on the Ion Torrent PGM platform. A FFPE QC material was prepared from a mixture of cell lines derived from different cancers, comprising single nucleotide variants and small deletions on actionable genes at different allelic frequencies. RESULTS The CHP2 assay performed with high precision and sensitivity when custom variant calling pipeline parameters where established. In addition, all expected somatic variants in the QC material were consistently called at variant frequencies ranging from 9.1 % (CV = 11.1 %) to 37.9 % (CV = 2.8 %). CONCLUSIONS The availability of a reliable and cost-effective QC material is instrumental in assessing the performance of this or any targeted NGS assay that detects somatic variants in fixed solid tumor specimens.
منابع مشابه
Strategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملClinical validation of KRAS, BRAF, and EGFR mutation detection using next-generation sequencing.
OBJECTIVES To validate next-generation sequencing (NGS) technology for clinical diagnosis and to determine appropriate read depth. METHODS We validated the KRAS, BRAF, and EGFR genes within the Ion AmpliSeq Cancer Hotspot Panel using the Ion Torrent Personal Genome Machine (Life Technologies, Carlsbad, CA). RESULTS We developed a statistical model to determine the read depth needed for a gi...
متن کاملRobustness of Next Generation Sequencing on Older Formalin-Fixed Paraffin-Embedded Tissue
Next Generation Sequencing (NGS) technologies are used to detect somatic mutations in tumors and study germ line variation. Most NGS studies use DNA isolated from whole blood or fresh frozen tissue. However, formalin-fixed paraffin-embedded (FFPE) tissues are one of the most widely available clinical specimens. Their potential utility as a source of DNA for NGS would greatly enhance population-...
متن کاملNext-Generation Sequencing of Lung Cancer EGFR Exons 18-21 Allows Effective Molecular Diagnosis of Small Routine Samples (Cytology and Biopsy)
Selection of lung cancer patients for therapy with tyrosine kinase inhibitors directed at EGFR requires the identification of specific EGFR mutations. In most patients with advanced, inoperable lung carcinoma limited tumor samples often represent the only material available for both histologic typing and molecular analysis. We defined a next generation sequencing protocol targeted to EGFR exons...
متن کامل